Urban Wood Waste Options Study – Phase II

SWAAC Presentation April 13, 2016

Andy Sloop, Metro
Aaron Toneys, Good Company

Overview

- Background
- Project Description
- Market Research
 - Methodology
 - Results
 - Findings
- Details Environmental Analysis
 - Methodology
 - Results
 - Review of Significant Analysis Assumptions
- Conclusions and Options

Project Purpose

- Identify and assess options
- For maintaining and improving
- End-market capacity, stability and environmental outcomes
- Can be implemented within next 10 years
- Emphasis on actions Metro can take

Wood Waste Tonnage

	Disposed	Recovered	Generated
Painted/Treated/NR	129,000	0	129,000
Not Painted/Treated	58,000	106,000	164,000
TOTAL	187,000	106,000	293,000

Phase 1 Scope

- Studied 13 options
- Literature review
- •Interviewed 30 industry leaders, wood scientists and researchers
- Surveyed 16 potential markets
- Analyzed public policy landscape
- Outlined alternatives for further consideration

Options Studied In Phase 1

- Animal bedding
- Biochar
- Cellulosic fuels
- Composite panelboard
- Densified fuels
- District heat
- •Dry AD
- Erosion control

- Export hog fuel
- Industrial hog fuel
- Pulp
- Reclaimedbuilding materials
- Refurbished pallets
- Remanufacturedlumber products

Phase 2 Scope

- Builds on findings of Phase I Study
- Compared three most practical fates for UWW
 - Status quo hogged fuel
 - Production of densified fuels (pellets, logs, etc.)
 - Production of engineered wood panels

Phase 2 Research Questions

- 1. What are requirements, level of interest and scale of target end-markets?
- 2. What changes, if any, are needed in how UWW is collected and processed to meet these requirements?
- 3. Are there actions Metro can take to support and/or catalyze these changes?
- 4. What are the lifecycle environmental implications of each fate analyzed?
- 5. What is significance, if any, of recent state legislation relating to woodstove smoke (HB 3068 and SB 752)

Market Research Methodology

- Identify interested, proximal manufacturers
- Interviewed manufacturers to define requirements (e.g., feedstock specs, pricing, demand, level of interest)
- Interviewed recyclers regarding current infrastructure and practices
- Generated sample equipment layouts and budgets
- Analyzed research findings to determine changes needed to meet end-market requirements

Findings

- Traditional hogged fuel remains a viable option for 3 – 5 years
 - "Stable but Fragile"
- Pellets for industrial fuel offers potential
 - UWW prohibited for use in residential stoves but allowed for industrial use
 - Western Oregon Wood Products is a potential customer
 @ around \$12-15/ton.
- Hogged fuel to charcoal briquettes offers potential
 - Kingsford torrefaction (Springfield)
 - Verify scale and health impacts

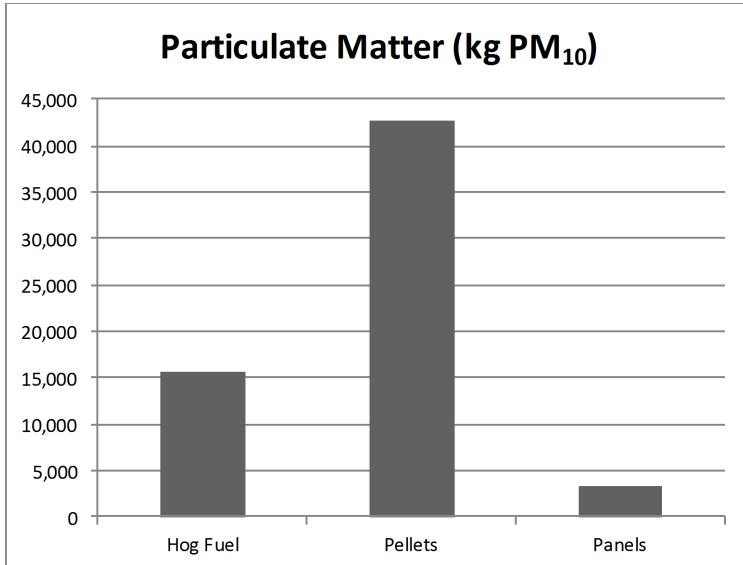
Findings

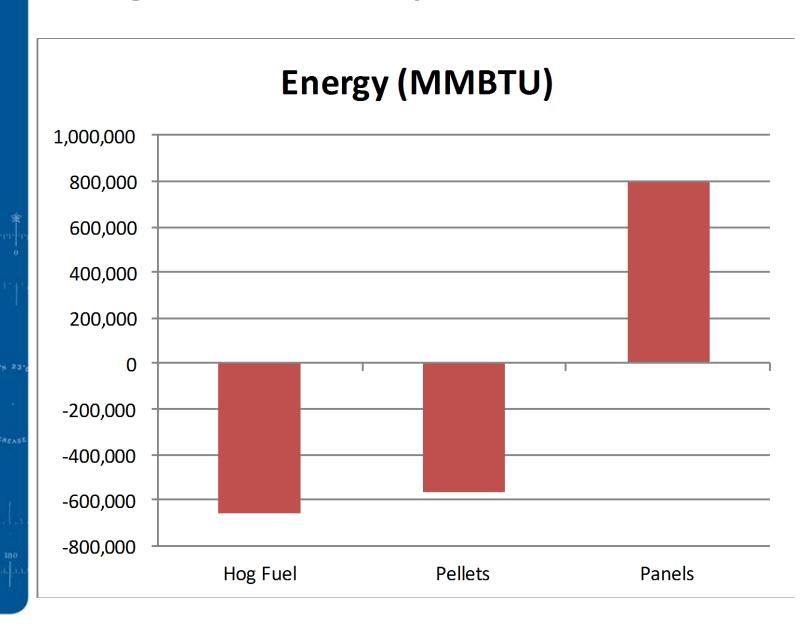
- Particle board furnish is not a viable option
 - No interest from industry
 - High cost to use UWW and meet stringent standards
 - Recent attempts to use UWW have failed due to contamination (esp. non-ferrous), particle size and uniformity, and species variation
- Small scale combined heat/power (CHP) in or near Metro area may be an option
 - Existing buildings, industrial park-like greenhouses,
 small-scale district heating

Findings

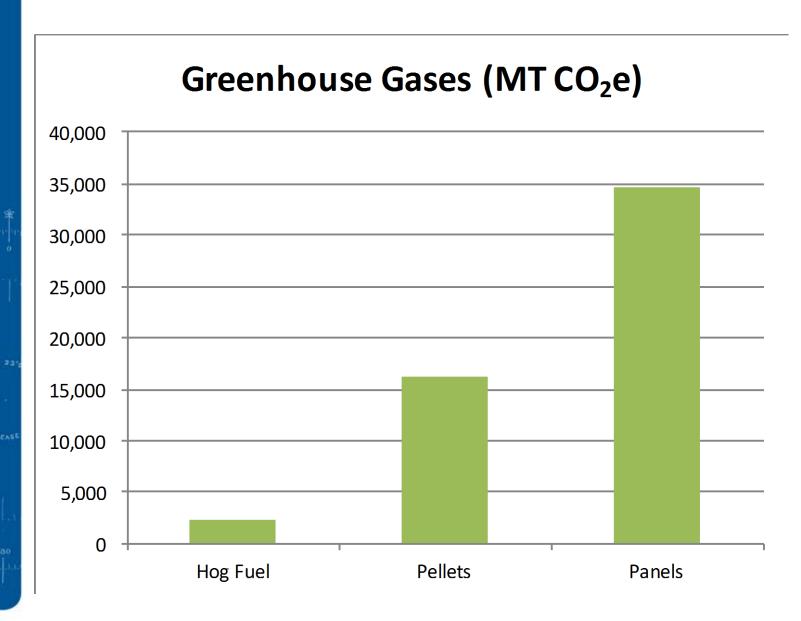
- Preparation of fiberboard and densified fuel feedstocks is identical and requires investment in additional infrastructure which may not pencil for many existing processors
- These feedstocks require extremely clean, unpainted, untreated UWW material with no contamination whatsoever.
- Removing the "clean" material from the existing hogged fuel stream would result in engineered wood products being landfilled

Environmental Analysis Methodology


- Compared Three Potential Fates for UWW
 - Hogged fuel to combined heat and power
 - Production of wood pellets for residential use
 - Production of MDF which is ultimately landfilled
- Metrics for Comparison
 - Greenhouse gas emissions
 - Particulate matter emissions not exposure
 - Energy


Methodology (continued)

- Based heavily on EPA's WARM methodology
- Considered lifecycle of materials and energy
- Significant conceptual assumptions are required particularly for GHG impacts
- Considered a number of scenarios, based on assumptions


Panels produce fewest emissions

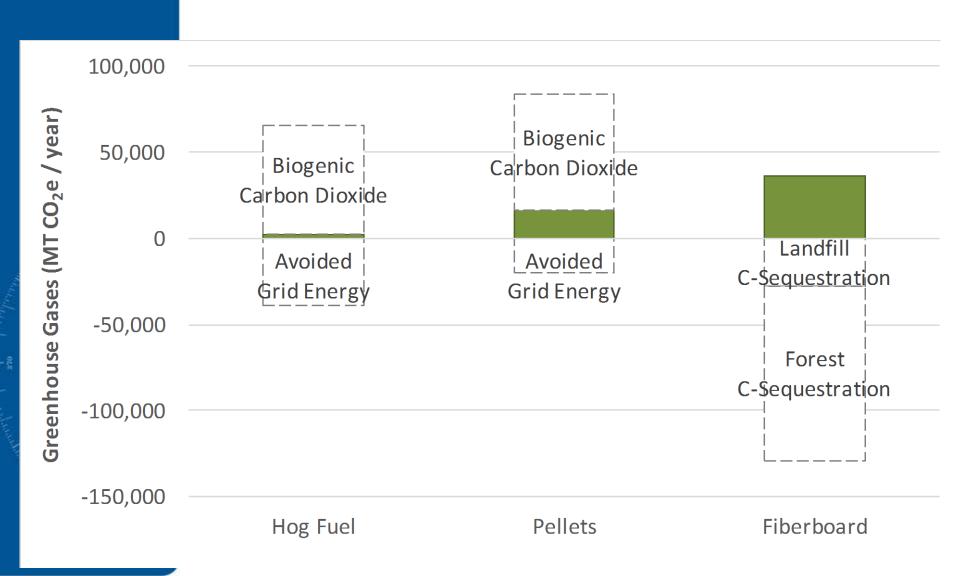
Hog Fuel / Pellets perform best

Hog Fuel performs best*

Conclusions and Options

- Hogged fuel is the most viable alternative over the next 3 to 5 years
- Particle board furnish is not a viable option
- Potential future options for further exploration
 - Pellets for domestic or international industrial markets
 - Kingsford charcoal products
 - Small combined heat and power energy system

Possible Metro Actions


- Continue work on enhanced salvage and reuse
- Distribute Final Report to intermediate processors and end markets; do follow-up phone calls to assess likelihood of private infrastructure investment
- Consider having policy discussion regarding planned versus laissez faire evolution of the UWW system
- Determine break-even scale for pellet feedstock facility selling pellets at \$12/ton
- Factor wood-related scenarios into Covanta analysis
- Revisit more promising Phase 1 options that were not included in Phase 2 investigation (e.g., biochar).

Thank you

Q&A

GHGs – Effect of Significant Assumptions

